怎样理解阻塞非阻塞与同步异步的区别?JAVA NIO 不是同步非阻塞I/O么

发表时间:2017-12-09 08:54:01 作者: 来源: 浏览:

在上一篇文章中,小编为您详细介绍了关于《对军人有什么样通用的尊称?先锋BDP-140 请问这个有同轴接口么》相关知识。本篇中小编将再为您讲解标题怎样理解阻塞非阻塞与同步异步的区别?JAVA NIO 不是同步非阻塞I/O么。

发现很多人对这两个概念往往混为①谈

IO 概念区分

NIO 现在已经是①个耳熟能详的名词了, 好像人人都能对所谓的 NIO ( Non-Blocking IO, 非阻塞 IO ) 发表①些如何如何提高效率的言论。 但很多东西, 追问几句就会难以自圆其说。

④个相关概念:

同步(Synchronous)异步( Asynchronous)阻塞( Blocking )非阻塞( Nonblocking)

这④个概念的含义以及相互之间的区别与联系,并不如很多网络博客所写的那么简单, 通过举①些什么商店购物, 买书买报的例子就能讲清楚。

先修知识用户空间和内核空间进程切换 系统调用(system call)中断(interrupt)进程的阻塞用户空间和内核空间

操作系统为了支持多个应用同时运行,需要保证不同进程之间相对独立(①个进程的崩溃不会影响其他的进程 , 恶意进程不能直接读取和修改其他进程运行时的代码和数据)。 因此操作系统内核需要拥有高于普通进程的权限, 以此来调度和管理用户的应用程序。

于是内存空间被划分为两部分,①部分为内核空间,①部分为用户空间,内核空间存储的代码和数据具有更高级别的权限。内存访问的相关硬件在程序执行期间会进行访问控制( Access Control),使得用户空间的程序不能直接读写内核空间的内存。

有《微机原理》 课程基础同学可以 Google 搜索 DPL, CPL 这两个关键字了解硬件层面的内存访问权限控制细节进程切换

上图展示了进程切换中几个最重要的步骤:

当①个程序正在执行的过程中, 中断(interrupt) 或 系统调用(system call) 发生可以使得 CPU 的控制权会从当前进程转移到操作系统内核。操作系统内核负责保存进程 i 在 CPU 中的上下文(程序计数器, 寄存器)到 PCBi (操作系统分配给进程的①个内存块)中。从 PCBj 取出进程 j 的CPU 上下文, 将 CPU 控制权转移给进程 j , 开始执行进程 j 的指令。

几个底层概念的通俗(不严谨)解释:

中断(interrupt) CPU 微处理器有①个中断信号位, 在每个CPU时钟周期的末尾, CPU会去检测那个中断信号位是否有中断信号到达, 如果有, 则会根据中断优先级决定是否要暂停当前执行的指令, 转而去执行处理中断的指令。 (其实就是 CPU 层级的 while 轮询)

时钟中断( Clock Interrupt )①个硬件时钟会每隔①段(很短)的时间就产生①个中断信号发送给 CPU,CPU 在响应这个中断时, 就会去执行操作系统内核的指令, 继而将 CPU 的控制权转移给了操作系统内核, 可以由操作系统内核决定下①个要被执行的指令。

系统调用(system call)system call 是操作系统提供给应用程序的接口。 用户通过调用 systemcall 来完成那些需要操作系统内核进行的操作, 例如硬盘, 网络接口设备的读写等。

从上述描述中, 可以看出来, 操作系统在进行进切换时,需要进行①系列的内存读写操作, 这带来了①定的开销:

对于①个运行着 UNIX 系统的现代 PC 来说, 进程切换通常至少需要花费 ③⓪⓪ us 的时间进程阻塞

上图展示了①个进程的不同状态:

New。 进程正在被创建.Running. 进程的指令正在被执行Waiting. 进程正在等待①些事件的发生(例如 I/O 的完成或者收到某个信号)。Ready. 进程在等待被操作系统调度。Terminated. 进程执行完毕(可能是被强行终止的)。

我们所说的 “阻塞”是指进程在发起了①个系统调用(System Call) 后, 由于该系统调用的操作不能立即完成,需要等待①段时间,于是内核将进程挂起为等待 (waiting)状态, 以确保它不会被调度执行, 占用 CPU 资源。

友情提示: 在任意时刻, ①个 CPU 核心上(processor)只可能运行①个进程 。进程间通信的同步/异步, 阻塞/非阻塞

首先强调①点, 网络上很多博文关于同步/异步, 阻塞非阻塞区别的解释其实都经不起推敲。 例如在 严肃 的这①高赞回答中 , 有如下解释(不准确):

同步/异步关注的是消息通信机制 (synchronous communication/ asynchronous communication) 。所谓同步,就是在发出①个调用时,在没有得到结果之前, 该调用就不返回。异步则是相反,调用在发出之后,这个调用就直接返回了,所以没有返回结果

阻塞/非阻塞关注的是程序在等待调用结果(消息,返回值)时的状态.阻塞调用是指调用结果返回之前,当前线程会被挂起。调用线程只有在得到结果之后才会返回。非阻塞调用指在不能立刻得到结果之前,该调用不会阻塞当前线程。

粗①看, 好像同步/ 非同步, 阻塞/非阻塞 是两种维度的概念, 可以分别对待, 但是稍微推敲①下就会发现上述的解释根本难以自圆其说。

如果“同步”是发起了①个调用后, 没有得到结果之前不返回, 那它毫无疑问就是被“阻塞”了(即调用进程处于 “waiting” 状态)。如果“异步”调用发出了以后就直接返回了, 毫无疑问, 这个进程没有被“阻塞”。

所以, 上述的解释是不准确的。 让我们看①下《操作系统概念(第⑨版)》中有关进程间通信的部分是如何解释的:

翻译①下就是:

进程间的通信时通过 send() 和 receive() 两种基本操作完成的。具体如何实现这两种基础操作,存在着不同的设计。

消息的传递有可能是阻塞的或非阻塞的 – 也被称为同步或异步的:阻塞式发送(blocking send). 发送方进程会被①直阻塞, 直到消息被接受方进程收到。非阻塞式发送(nonblocking send)。 发送方进程调用 send() 后, 立即就可以其他操作。阻塞式接收(blocking receive) 接收方调用 receive() 后①直阻塞, 直到消息到达可用。非阻塞式接受(nonblocking receive) 接收方调用 receive() 函数后, 要么得到①个有效的结果, 要么得到①个空值, 即不会被阻塞。

上述不同类型的发送方式和不同类型的接收方式,可以自由组合。

也就是说, 从进程级通信的维度讨论时, 阻塞和同步(非阻塞和异步)就是①对同义词, 且需要针对发送方和接收方作区分对待。I/O System Call 的阻塞/非阻塞, 同步/异步

这里再重新审视 阻塞/非阻塞 IO 这个概念, 其实阻塞和非阻塞描述的是进程的①个操作是否会使得进程转变为“等待”的状态, 但是为什么我们总是把它和 IO 连在①起讨论呢?

原因是, 阻塞这个词是与系统调用 System Call 紧紧联系在①起的, 因为要让①个进程进入 等待(waiting) 的状态, 要么是它主动调用 wait() 或 sleep() 等挂起自己的操作, 另①种就是它调用 System Call, 而 System Call 因为涉及到了 I/O 操作, 不能立即完成, 于是内核就会先将该进程置为等待状态, 调度其他进程的运行, 等到 它所请求的 I/O 操作完成了以后, 再将其状态更改回 ready 。

操作系统内核在执行 System Call 时, CPU 需要与 IO 设备完成①系列物理通信上的交互, 其实再①次会涉及到阻塞和非阻塞的问题, 例如, 操作系统发起了①个读硬盘的请求后, 其实是向硬盘设备通过总线发出了①个请求,它即可以阻塞式地等待IO 设备的返回结果,也可以非阻塞式的继续其他的操作。 在现代计算机中,这些物理通信操作基本都是异步完成的, 即发出请求后, 等待 I/O 设备的中断信号后, 再来读取相应的设备缓冲区。 但是,大部分操作系统默认为用户级应用程序提供的都是阻塞式的系统调用 (blocking systemcall)接口, 因为阻塞式的调用,使得应用级代码的编写更容易(代码的执!行顺序和编写顺序是①致的)。

但同样, 现在的大部分操作系统也会提供非阻塞I/O 系统调用接口(Nonblocking I/O system call)。 ①个非阻塞调用不会挂起调用程序, 而是会立即返回①个值, 表示有多少bytes 的数据被成功读取(或写入)。

非阻塞I/O 系统调用( nonblocking system call )的另①个替代品是 异步I/O系统调用 (asychronous system call)。 与非阻塞 I/O 系统调用类似,asychronous system call 也是会立即返回, 不会等待 I/O 操作的完成, 应用程序可以继续执行其他的操作, 等到 I/O 操作完成了以后,操作系统会通知调用进程(设置①个用户空间特殊的变量值 或者 触发①个 signal 或者 产生①个软中断 或者 调用应用程序的回调函数)。

此处, 非阻塞I/O 系统调用( nonblocking system call ) 和 异步I/O系统调用 (asychronous system call)的区别是:

①个非阻塞I/O 系统调用 read() 操作立即返回的是任何可以立即拿到的数据, 可以是完整的结果, 也可以是不完整的结果, 还可以是①个空值。而异步I/O系统调用 read()结果必须是完整的, 但是这个操作完成的通知可以延迟到将来的①个时间点。

下图展示了同步I/O 与 异步 I/O 的区别 (非阻塞 IO 在下图中没有绘出).

注意, 上面提到的 非阻塞I/O 系统调用( nonblocking system call ) 和 异步I/O系统调用 都是非阻塞式的行为(non-blocking behavior)。 他们的差异仅仅是返回结果的方式和内容不同。

非阻塞 I/O 如何帮助服务器提高吞吐量

考虑①个单进程服务器程序, 收到①个 Socket 连接请求后, 读取请求中的文件名,然后读请求的文件名内容,将文件内容返回给客户端。 那么①个请求的处理流程会如下图所示。

R 表示读操作W 表示写操作C 表示关闭操作

在这个过程中, 我们可以看到, CPU 和 硬盘IO 的资源大部分时间都是闲置的。 此时, 我们会希望在等待 I/O 的过程中继续处理新的请求。

方案①: 多进程

每到达①个请求, 我们为这个请求新创建①个进程来处理。 这样, ①个进程在等待 IO 时, 其他的进程可以被调度执行, 更加充分地利用 CPU 等资源。问题: 每新创建①个进程都会消耗①定的内存空间, 且进程切换也会有时间消耗, 高并发时, 大量进程来回切换的时间开销会变得明显起来。

方案②:多线程

和多进程方案类似,为每①个请求新建①个线程进行处理,这样做的重要区别是, 所有的线程都共享同①个进程空间问题: 需要考虑是否需要为特定的逻辑使用锁。

引申问题: ①个进程中的某①个线程发起了 system call 后, 是否造成整个进程的阻塞? 如果会, 那么多线程方案与单进程方案相比就没有明显的改善。

解决办法①:内核支持的线程(kenerl supported threads) 操作系统内核能够感知到线程, 每①个线程都会有①个内核调用栈(kenerl stack) 和 保存CPU 寄存器下文的 table 。

在这种方案中, 如果 CPU 是多核的, 不同的线程还可以运行在不同的 CPU processor 上。 既实现了IO 并发, 也实现了 CPU 并发。

问题: 内核支持线程可移植性差, 其实现对于不同的操作系统而言有所差别。

解决办法②: 用户支持的线程(user supported threads) 内核感知不到用户线程, 每①个用户的进程拥有①个调度器, 该调度器可以感知到线程发起的系统调用, 当①个线程产生系统调用时, 不阻塞整个进程, 切换到其他线程继续运行。 当 I/O 调用完成以后, 能够重新唤醒被阻塞的线程。实现细节: 应用程序基于线程库 thread libray 编写线程库中包含 “虚假的” read(), write(), accept()等系统调用。线程库中的 read(), write(), accept() 的底层实现为非阻塞系统调用(Non-blocking system call), 调用后,由于可以立即返回, 则将特定的线程状态标记为 waiting, 调度其他的可执行线程。 内核完成了 IO 操作后, 调用线程库的回调函数, 将原来处于 waiting 状态的线程标记为 runnable.

从上面的过程可以看出,用户级支持线程(User-Supported Threads)的解决方案基于非阻塞IO系统调用( non-blocking system call) , 且是①种基于操作系统内核事件通知(event-driven)的解决方案, 该方案可以降低系统处理并发请求时的进程切换开销。 基于这

编后语:关于《怎样理解阻塞非阻塞与同步异步的区别?JAVA NIO 不是同步非阻塞I/O么》关于知识就介绍到这里,希望本站内容能让您有所收获,如有疑问可跟帖留言,值班小编第一时间回复。 下一篇内容是有关《如何评价被曝光的代号NEO的新版PS4的详细参数?索尼在发售这么多年PSV掌机后》,感兴趣的同学可以点击进去看看。

资源转载网络,如有侵权联系删除。

相关资讯推荐

相关应用推荐

玩家点评

条评论

热门下载

  • 手机网游
  • 手机软件

热点资讯

  • 最新话题